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Abstract
Effective Dirac equations are, by following the work of Pilkuhn, derived for a
binary of two fermions from the original two-fermion Dirac-type Hamiltonian
written in a 16-component spinor representation. For spherical interaction
potential (like the static Coulomb potential) the spin dynamics in the product
spin space and spatial dynamics in the particle–antiparticle state space can be
fully decoupled and separated. The case of atomic hydrogen is solved again
as an example, and the standard results including recoil effects through the
reduced mass and fine structure induced by spin–orbit coupling are recovered
for the energy spectrum.

PACS numbers: 03.65.Pm, 31.15.−p

1. Introduction

The precise calculation of the energy spectra of binaries including their fine structure is a
main topic of relativistic quantum mechanics. The state of this field has been described in a
recent textbook by Pilkuhn [1], and previously in a review paper [2]. The classical example
of such a binary system is the hydrogen atom. If one only considers the static Coulomb
coupling between the proton and electron but accounts for their spins, one can solve this
problem exactly, using the so-called Dirac–Coulomb Hamiltonian. In a previous publication by
Marsch [4] the energy levels and wavefunctions of the two-fermion Hamiltonian for such a
simple hydrogen-like binary bound by the Coulomb force were calculated exactly, following
the same procedures that lead Gordon [3] to his solution of the Dirac equation. The
eigenfunctions of the spin–orbit-coupling operators are four-component spinors forming a
basis in the spin product state spanned by the spin singlet- and triplet-like eigenfunctions of
the total angular momentum operator [5]. The four-component radial wavefunctions in the
particle–antiparticle state can be expressed in terms of generalized hypergeometric functions
which are determined through a matrix recursion relation [6].
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Häckl et al [7] proposed a reduction of the 16-component spinor into an equivalent eight-
component spinor by a fully relativistic elimination of two components, and by exploiting
the common basis of the chirality and parity operators of the two-fermion Dirac equation.
By a further transformation of the eight-component spinor by means of the spin-exchange
operator of the two fermions, they were able to remove the spin of one fermion entirely, thus
ending up with an effective Dirac equation for the binary which is discussed extensively in
Pilkuhn’s book [1] and in his two more recent papers [8, 9] on relativistic bound states and a
Klein–Gordon equation for atoms.

Here we will point to some questions related to this approach and discuss alternative
treatments of the problem, leading to other eight-component equations that preserve the
original symmetries and still involve the full spin dynamics of the binary system of the two
fermions with masses m1 and m2 and spins σ1 and σ2, respectively corresponding to the
vector of the standard Pauli [10] spin matrices. For m1 �= m2, we obtain an effective Dirac
equation that is linear in the momentum operator p = −ih̄∂/∂r of relative motion (with r
being the particles distance), and for m1 = m2 the result is a Kramers-like equation [11] which
corresponds to the squared Dirac equation [12, 13] and is of second order in p.

Two-body Dirac equations were proposed and used by Van Alstine and Crater [14] in the
center-of-momentum (cms) coordinate system to provide Kramers- or Schrödinger-like wave
equations (depending on p2), which were then applied to binaries. Their approach is also
important from the point of view that such equations are quite relevant for leptonic systems
such as charmonium, or positronium for example [16], because exact results from reduced
relativistic quantum mechanics can serve as benchmark cases for the solutions obtained by
means of modern quantum field theory, which are mostly of a perturbative nature.

The relativistic quantum theory of two particles has a long history. In an early paper,
Bekamjian and Thomas [15] defined two-body quantum mechanics on the basis of an exact
unitary representation of the Poincaré group. In a later paper, Van Alstine and Crater [14]
constructed, for example, the covariant two-fermion dynamics by means of quantization of the
so-called relativistic constraint mechanics. Their model leads to a 16-component covariant
wave equation. Another form of a relativistic wave equation for two fermions has most recently
been derived by Giachetti and Sorace [17], who start from the covariant classical kinematics
of a binary and then derive its quantization as a free two-fermion system in a framework of
pure relativistic quantum mechanics. The resulting Hamiltonian, in which we use the standard
Dirac matrices [12] α̂ and β̂ and include a general scalar interaction potential V (r) depending
on the relative distance r = √

r · r, can be written as follows:

H12 = V (r) + β̂1m1c
2 + β̂2m2c

2 + α̂1 · cp1 + α̂2 · cp2. (1)

In this equation, and in the above-mentioned similar cases, the underlying assumptions of
relativistic theory are obvious, and one can identify the representation of the Hilbert space
and unitary representation of the Poincaré group. In (1) p1,2 is the fermion momentum in the
inertial frame, c the speed of light in vacuo, and r = x1 − x2 the distance vector between the
loci of the two fermions. This quantum-mechanical approach is certainly useful for calculating
relativistic corrections of the energy spectrum for unlike binaries such as the hydrogen atom
or the muon–positron bound state. However, the static Coulomb potential used below clearly
must be complemented by radiative effects of the electromagnetic interaction, when the two
fermions have equal masses such as in positronium, muonium or charmonium, where genuine
relativistic effects dominate. Of course, relativistic quantum mechanics has its limitations,
and only modern quantum field theory [18] provides an adequate relativistic description of
any fermionic binary.
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In the present paper we analyze the possible solutions of the differential equations
arising from the relativistic quantum mechanics of two fermions, both being governed by
the binary Dirac equation (1), with a 1/r-Coulomb potential binding the particles. The
relevant Hamiltonian is given subsequently in (3), which in this form has been investigated
before by Marsch [4], using Dirac’s original method to derive (1). The Dirac matrices
appearing in (1) can be decomposed into direct products, in which the operators α and β act
in particle–antiparticle space and the Pauli matrix operator as usually acts in the spin space
related to each fermion. We can thus rewrite the Dirac matrices in the following form:

α̂ = ασ =
(

0 1
1 0

)
σ, β̂ = βσ0 =

(
1 0
0 −1

)
σ0. (2)

Here σ0 is understood to be the 2×2 unit matrix, and the symbol σ denotes a three-component
vector, σ = (σx, σy, σz), consisting of the Pauli [10] matrices which have their standard form.
Equation (2) implies the definition of α and β.

2. The two-fermion Dirac–Coulomb operator

The two-fermion problem is treated here in the center-of-momentum system (cms) and in
relative coordinates. For a more comprehensive discussion of this subject see the book of
Pilkuhn [1]. The nomenclature is as usual: e is the electric charge unit, and αS = e2/h̄c is
Sommerfeld’s fine structure constant. One fermion is assumed to have charge number +1, the
other −1. In the cms, p1 + p2 = 0, and thus one can write p1,2 = ±p. The Coulomb interaction
is assumed as instantaneous, because the light travel time through a Bohr or Fermi radius is
very much shorter than any typical dynamic evolution time of the particles, and therefore
retardation effects are neglected here in lowest order. The simplest possible electrostatic
binary Hamiltonian then reads

H = −αSh̄c

r
+ β1m1c

2 + β2m2c
2 + α1σ1 · cp − α2σ2 · cp. (3)

The nomenclature used here was defined previously in [4] and is consistent with that adopted
in the textbook by Strange [19] on the relativistic quantum mechanics of multi-electron atoms.
The operator in equation (3) represents the binary’s mass Casimir operator of the underlying
representation of the Poincaré group, as shown by Giachetti and Sorace [17]. The angular
momentum operator corresponding to the relative momentum of the particles orbiting around
each other is

L = r × p. (4)

Before continuing the calculations, we analyze the internal symmetries of the binary system.
The orbital momentum operator L commutes with the Coulomb potential,

[
L, 1

r

] = 0, but not
with the spin terms. As usually we denote the commutator by [, ] and anti-commutator as {, }.
The single-spin operators of the two fermions forming the binary are S1,2 = 1

2h̄σ1,2. The total
angular momentum operator, defined as

J = L + S1 + S2, (5)

does commute with H. We [4] denote the eigenfunction of J in the four-dimensional spin state
space by ϒ . Note that according to the angular momentum operator algebra the following
relations hold for the spins: [L + S1,2, (S1,2 · p)] = 0, and similarly [L + S1,2, (S1,2 · r)] = 0.
Furthermore, the operator relations hold [α1, α2] = [β1, β2] = [β1, α2] = [α1, β2] = 0 and
{α1,2, β1,2} = 0, and finally α2

1,2 = 1 and β2
1,2 = 1. For the Dirac equation, the associated
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Hilbert space is two dimensional and describes particles and antiparticles. In the simplest
matrix representation we then obtain

α =
(

0 1
1 0

)
, β =

(
1 0
0 −1

)
. (6)

For the two-fermion Dirac equation (3) the operators α1,2 and β1,2 act in a four-dimensional
Hilbert space and thus are represented by 4 × 4 matrices. The eigenvectors of (6) simply are

φ+ =
(

1
0

)
, φ− =

(
0
1

)
, (7)

which form an orthonormal set. The operator α interchanges particle and antiparticle. The
two operators in (6) act as follows:

αφ± = φ∓, βφ± = ±φ∓. (8)

It is now a straightforward task [4] to represent the Hamiltonian (3) as a 4 × 4 matrix. The
stationary eigenvalue problem, H� = E�, attains the form⎛
⎜⎜⎝

(m1 + m2)c
2 σ1 · cp −σ2 · cp 0

σ1 · cp (−m1 + m2)c
2 0 −σ2 · cp

−σ2 · cp 0 (m1 − m2)c
2 σ1 · cp

0 −σ2 · cp σ1 · cp (−m1 − m2)c
2

⎞
⎟⎟⎠ �(r)

=
(

E +
αSh̄c

r

)
�(r). (9)

Let us consider from now on the free-particles problem and put for the time being αS = 0. We
normalize the energy to the total rest energy with mass M = m1 + m2, i.e. y = E/Mc2, and
introduce the helicities:

S1,2(p̂) = σ1,2 · p̂, (10)

which obey the relation S2
1,2 = 1, and of course [S1, S2] = 0. This results from the well-known

algebra of the Pauli matrices: σ × σ = 2iσ, and (σ · p)2 = p2. Here p̂ = p/p is a unit
vector. The solution of (9) is a plane wave, and the eigen spinor is here written as a row vector
normalized to unity in the four-dimensional particle/antiparticle state space and reads

�†(r) = exp(−ip · r)ϒ †(a1(p), a2(p)S1(p̂), a3(p)S2(p̂), a4(p)S1(p̂)S2(p̂)). (11)

The coefficients aj (p) of the spinor components are given by the following expressions:

a1,4(p) = ∓
√

y ± 1

y ∓ 1
A(p), a2,3(p) = ∓ 2yp̃√

y2 − 1(y ∓ R)
A(p), A(p) = p̃y√

y4 − R2
.

(12)

Normalization requires that �†� = 1, which is fulfilled since a2
1 + a2

2 + a2
3 + a2

4 = 1, whereby
the subsequent dispersion equation (13) is exploited. The eigenvalue problem for E(p)

yields, through the vanishing determinant of the matrix in (9), this dispersion relation, i.e. the
normalized momentum p̃ = p/Mc as a function of normalized energy:

p̃ =
√

(y2 − 1)(y2 − R2)

(2y)2
, (13)

where we introduced the abbreviation symbol R = (m2 −m1)/M . For bound states dealt with
in [4] we have y < 1. Then we may write p̃ = iκ , where κ must be positive to ensure that the
wavefunction decays to zero at infinity. For free particles dealt with in this section p̃ is real, and
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we can solve the resulting fourth-order polynomial for y and obtain for E(p) the four energy
combinations: E1 + E2,−E1 + E2, E1 − E2,−E1 − E2. Here E1,2(p) = √

(m1,2c2)2 + (cp)2

simply is the total energy of a free relativistic fermion in the cms frame.
Any reduced version of the original equation (3) must reproduce the above energy

spectrum for zero interaction. Furthermore, one must also require that the genuine symmetries
are obeyed and not broken by a reduction of the spinor components. For example, the individual
angular momenta, J1,2 = L + S1,2, do not commute with (3), since in the binary both spins are
intrinsically linked through their common spin–orbit coupling. One may introduce the spin
permutation operator [1] as P = 1/2(1 + σ1 · σ2), which obeys P2 = 1. Operator algebra
yields Pσ1,2P = σ2,1. Note that this operator also does not commute with the Hamiltonian,
since it interchanges the spins, and thus leads to a wrong mixed association with the α-operators
in (3).

3. Three versions of the reduced operator for two free fermions

In this section, while following closely the work of Pilkuhn [1], we will establish three novel
forms of the eight-component spinor wave equation, which result from linear transformations
of the original wave equation (3). Again, we set αS = 0, but return in the next section to the
hydrogen-like atom problem. In the following it eases the notation to define the dimensionless
symbols: µ± = (m1 ± m2)/M = µ1 ± µ2, with µ+ = 1 by definition, and similarly
σ± = σ1 ± σ2, where

σ1,2(p) = (σ1,2 · p)/(Mc). (14)

By definition we have σ 2
1,2 = p2/(Mc)2 and σ+σ− = σ−σ+ = 0. Inspection of the structure

of the original matrix (9) suggests combining similar blocks and introducing two-component
spinors by respectively pairing two of the four components of �† = (

ψ
†
1, ψ

†
2, ψ

†
3, ψ

†
4

)
in

various suitable combinations. The simplest version is obtained by introducing

ζ =
(

ψ1

ψ2

)
, ξ =

(
ψ3

ψ4

)
, (15)

which leads to the following set, in which the matrices of (6) are again used:

(−y + (µ1β + µ2) + σ1α)ζ = σ2ξ

(−y + (µ1β − µ2) + σ1α)ξ = σ2ζ.
(16)

Insertion of the second in the first equation, while exploiting the matrix properties of α

and β, yields a Dirac equation for particle 1 in the center-of-momentum frame. Similarly,
combining the first and third, and the second and fourth components gives a Dirac equation for
particle 2. Thus each particle obeys

ε1,2ζ1,2 = (βµ1,2 + ασ1,2(p))ζ1,2, (17)

where we suppressed the indices for α and β. Squaring of (17) results in the cms mass–shell
condition, ε2

1,2 − µ2
1,2 = (p/Mc)2, of a free particle. The total energy is E = Mc2(ε1 + ε2),

whereby the individual fractional energy is

ε1,2 = (
y2 − µ2

2,1 + µ2
1,2

)/
(2y). (18)

The resulting spectrum is identical to what we found when solving the original four-component
spinor eigenvalue problem (9). Apparently, both particles are entirely decoupled by this
scheme. However, this approach is not convenient when the interaction is switched on.
Moreover, somehow the original symmetry seems broken, since the Dirac operator (17)
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already commutes with the one-particle angular momentum operator J1,2, whereas the full
Hamiltonian (3) did not.

It then appears more appropriate [7] to make use of the common basis of the chirality
operator A = α1α2 and parity operator B = β1β2, which commute with each other. The
relations hold, A2 = 1 and B2 = 1, so that their eigenvalues simply are ±1. This basis change
is achieved by the following linear combinations:

φ1,2 = (ψ1 ± ψ4)/
√

2, φ3,4 = (ψ2 ± ψ3)/
√

2. (19)

Here the basis ψj , with j running from 1 to 4, is in a standard form as already given in
paper [4]. The eigenvalue problem (9) in the new basis attains the form⎛

⎜⎜⎝
−y µ+ σ−(p) 0
µ+ −y 0 σ+(p)

σ−(p) 0 −y −µ−
0 σ+(p) −µ− −y

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

φ1(r)
φ2(r)
φ3(r)
φ4(r)

⎞
⎟⎟⎠ = 0. (20)

We now try another combination of components:

χ+ =
(

φ1

φ4

)
, χ− =

(
φ2

φ3

)
. (21)

The coupled set of equations for these two-component spinors reads

yχ+ = (µ1β + µ2 + α(σ1 + σ2β)) χ−
yχ− = (µ1β + µ2 + α(σ1 − σ2β)) χ+.

(22)

Multiplying these equations, one obtains a new Kramers–Dirac-like equation as follows:

ε̂(p)χ± = (βµ̂±(p) + ασ̂±(p))χ±. (23)

Note that the spin- and mass-dependent operators do no longer contain the matrix β, and
therefore commute with α. In detail we have the definitions

ε̂(p̃) = (
y2 − µ2

1 − µ2
2 − 2p̃2

)/
2, (24)

µ̂±(p) = µ1µ2 ∓ σ1(p)σ2(p), (25)

σ̂±(p) = µ2σ1(p) ± µ1σ2(p). (26)

We recall that the spin algebra yields [σ1,2, σ1,2] = 0, and therefore when squaring the operators
in (25)–(26) the multiplication sequence does not matter. Exploiting αβ + βα = 0, we can
square equation (23) and obtain a quadratic equation in y2. It reads y4 − 2y2

(
µ2

1 + µ2
2 + 2p̃2

)
+(

µ2
1 −µ2

2

)2 = 0. The solution gives the same old combination of free-particle energies as was
derived in the previous section from (13). So, the full asymptotic spectrum results from (23),
which formally looks like a Dirac equation, yet which through ε̂(p̃) and µ̂±(p) is in fact of
second order in p̃, as in the Kramers (Klein–Gordon) equation. It should be emphasized that
there is no problem in going to the limit of equal masses in this equation. Furthermore, both
spins still appear, and thus J1,2 is not conserved, but J of (5) is. Thus the equation keeps the
original symmetry, also when interchanging the indices, yet it does not commute with P .

There is a third way of combining the elements of the originally four-component
spinor [1]. We may better choose

ψ− =
(

φ1

φ3

)
, ψ+ =

(
φ2

φ4

)
. (27)

6
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This leads to a particularly transparent form of the reduced equations:

(y − ασ−) ψ− = (µ2 + µ1β)ψ+

(y − ασ+) ψ+ = (µ2 + µ1β)ψ−.
(28)

Multiplying these equations, one can exploit the fact that σ+σ− = 0 and thus remove the
quadratic term in p entirely. Thus one obtains an effective Dirac equation, which really is
linear in the momentum p and reads as follows:

εψ± = (βµ + α�±(p)) ψ±. (29)

Here we have newly introduced the spin matrix that is defined as

�±(p) =
(

σ̂±(p)/µ+ 0
0 −σ̂∓(p)/µ−

)
=

(
µ2σ1±µ1σ2

µ2+µ1
0

0 µ2σ1∓µ1σ2

µ2−µ1

)
, (30)

which uses the symbol defined in (26) and thus has the property that (α�±)2 = p2/(Mc)2.
It also obeys [�±, β] = 0. Both signs in (30) are equivalent and therefore we will only
use the plus sign in the following. We introduced a symbol for the effective reduced mass:
µ = µ1µ2/y. Squaring equation (29) gives the mass–shell condition: ε2 = µ2 + p2/(Mc)2,
where the energy variable is defined as

ε = (
y2 − µ2

1 − µ2
2

)/
(2y). (31)

Solving for y yields the four previously obtained free solutions, so that the asymptotic behavior
is okay. Note, however, that the limit m1 = m2 cannot be obtained as �± formally diverges in
this limit, and the inversion of the set of equations (28) becomes impossible. In the interesting
extreme limits of m1 � m2 or m2 � m1, the operator simply goes into σ2, respectively σ1.
As a result, we obtain in case of one particle being the dominant in mass the simple Dirac
equation for the other particle involving its spin only, yet with the important recoil effect of
the heavier particle included in ε and µ. Strictly speaking, however, as for all the other three
versions of the effective Dirac equations, we have to calculate the spin states in the direct
product space formed by the spins of the two particles of the binary. In the above limiting
cases, in lowest order of the mass ratio one may consider, respectively, the individual angular
momentum J1,2 to be conserved. Generally, however, both spins appear, and thus only J of (5)
remains strictly conserved. Thus equation (29) fully keeps the original symmetry, also when
formally interchanging the indices, yet it does not commute with P , since [P, σ̂±] �= 0.

4. The wavefunctions and spectrum of a hydrogen-like binary

We now return to the Dirac–Coulomb problem as formulated by operator (3). Its reduced
version in its most convenient form for free particles was derived in the previous section. As
discussed extensively by Pilkuhn [1] it suffices to introduce the potential linearly into (29).
Originally, the replacement is E → E +αSh̄c/r . In the linear approximation, this corresponds
in (29) to ε → ε + αS/x, where we have normalized the distance coordinate to λC = h̄/(Mc),
the Compton wavelength based on the total mass. In compliance with the spherical
symmetry, the spin operator needs to be expressed in spherical coordinates. This is done,
like e.g. in [4, 5] by introducing instead of (14) the spin–orbit coupling operator:

σ1,2(p) = S1,2(r̂)
i

x

(
− ∂

∂x
x + K̂1,2

)
, (32)

with the unit vector r̂ = r/r , and K̂1,2 = 1 + L · σ1,2/h̄. Like in (10), we here introduced the
spatial helicity:

S1,2(r̂) = σ1,2 · r̂. (33)

7
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As a consequence of this definition S2
1,2 = 1. The operator J commutes with K̂1,2, which

together can therefore have common eigenfunctions. Some operator algebra shows that the
relation holds:

[K̂1, K̂2] = i

h̄
L · (σ1 × σ2), (34)

which indicates that the K̂-Operators do generally not commute with each other. However, as
it was shown [5] one can indeed construct common eigenfunctions for them. In the relevant
subspaces spanned by singlet and mixed triplet spin states, the K̂-operators do commute with
each other and have common eigenfunctions here named again ϒk for short. The related
eigenvalue is called k. It can attain the values k = ±1,±2,±3, . . . . Since it has frequently
been used before that σ1(p) and σ2(p) commute, the original 4 × 4 product spin state must be
reduced by one dimension [5] to ensure this property in spherical coordinates as well. Another
consequence of that is for the singlet state only k = 1 is permitted. Finally, {K̂i, Sj } = 0 for
any i = 1, 2 and j = 1, 2, whenever these operators act on an eigenfunction ϒk . Therefore,
we omit the index and make use of K̂ϒk = kϒk . As usually for the Coulomb potential, one
makes the standard ansatz for the solution spinor:

ψ(x) = 1

x
φ(x). (35)

It is further convenient to introduce the spin helicity matrix,

S(x̂) =
(

µ2S1+µ1S2

µ2+µ1
0

0 µ2S1−µ1S2

µ2−µ1

)
, (36)

which possesses the property (αS)2 = 1. With these preparations we can write the effective
Dirac equation (29) in the new concise form(

ε +
αS

x

)
φ(x) =

(
βµ + αiS(x̂)

(
− ∂

∂x
+

K̂

x

))
φ(x), (37)

of which the spatial part can be separated by making an ansatz for the spinor φ that is in
analogy with the treatment of the normal Dirac equation and as in paper [4]:

φ(x) =
(

(1 + S1S2)F (x)

i(S1 + S2)G(x)

)
ϒk. (38)

Note that the spinor is chosen to be invariant under the parity transformation βP, since
PS1,2 = −S1,2. Thus φ(x) carries the parity of ϒk , which after [5] is (−1)l , with l being
the angular momentum quantum number. By paying careful attention to the anticommutation
rules of the S- and K̂-operators, we obtain by operating with the spin-helicity matrix on the
spinor φ the result

iS(x̂)

(
− ∂

∂x
+

K̂

x

)
φ(x) =

(
i(S1 + S2)

( − ∂
∂x

+ k
x

)
F(x)

−(1 + S1S2)
( − ∂

∂x
− k

x

)
G(x)

)
ϒk. (39)

Exploiting this relation, we retain from (37) the familiar set of two coupled linear differential
equations for the two spatial wavefunctions in matrix form:(

ε + αS
x

− µ − ∂
∂x

− k
x

∂
∂x

− k
x

ε + αS
x

+ µ

)
·
(

F(x)

G(x)

)
= 0. (40)

The solution of this equation follows standard procedures [1] and need not be repeated here.
The effective energy spectrum is given by the fine-structure formula:

ε/µ = e(n, k) = (
1 + α2

S

/(√
k2 − α2

S − |k| + n
)2)−1/2

. (41)
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We recall that, as discussed in [4, 5], there are two separate solutions concerning the spin–
orbit-coupling quantum number k: the (in spatial angle) isotropic solution for a singlet para-
hydrogen-like system, with k = 1 only, and the angularly nonuniform solution for the triplet
ortho-hydrogen-like binary, with k = 1 and k = ±2,±3 . . . . One has n = 1, 2, 3, . . . as
usually for the principal quantum number. To find the energy spectrum E(n, k) of the binary
one has to insert (41) into the quadratic equation (31) and solve for y. The result includes the
recoil effect through the mass ratio µr/M with the reduced mass µr = m1m2/(m1 + m2), and
the Coulomb binding via the squared fine-structure constant α2

S. The corresponding power
series expansions in terms of these two basic parameters are discussed in the textbook [1].

Finally, let us consider the case m1 = m2, for which (30) cannot be used. Instead one may
solve (23) for µ1 = µ2 = 1/2, and for the plus sign. We also have to replace y by y + αS/x.
When applying the operator defined in (26),

σ̂+(p) = (µ2σ1(p) + µ1σ2(p)) = (µ2S1(x̂) + µ1S2(x̂))
i

x

(
− ∂

∂x
x + K̂

)
, (42)

on the function (38), while observing that µ1+µ2 = 1, the right-hand side of (39) is reproduced.
Concerning the two operators of (24) and (25), we may simplify them by considering that the
momentum in the Coulomb bound state is only small, p/(Mc) ≈ µr/MαS = µ1µ2αS, and
x ≈ M/µr. Consistently, we can therefore neglect all terms quadratic in αS, and thus obtain
the p-independent quantities: ε̂ = (y2 − 1/2)/2 and µ̂ = 1/4. The energy spectrum can
then be written in the same way as previously, with the ratio ε̂/µ̂ = ε/µ given by e(n, k) of
formula (41). For all possible mass ratios the general result is y2 = µ2

1 + µ2
2 + 2µ1µ2ε/µ, or

finally in the original energy units

E(n, k) = Mc2

√
1 + 2

µr

M
(e(n, k) − 1). (43)

5. Conclusion

An effective Dirac equation using an eight-component spinor representation was derived
for a binary of two fermions from the two-fermion Dirac–Coulomb Hamiltonian, originally
written in a 16-component spinor representation. The case of a hydrogen-like atom was
again discussed as an example, and the results obtained by various authors [1] were retained,
including the effects of the recoil through the reduced mass and the spectral fine structure
induced by the joint spin–orbit coupling of the two fermions constituting the binary. The
resulting fine-structure splitting remains the same for the binary as for the single Dirac electron,
and it is independent of the mass ratio. However, this fine structure is only revealed by the
ortho-fermionium and not the para-fermionium, a result which should experimentally be
tested with hydrogen.
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